smooth
package has a
mechanism of treating the data with zero values. This might be useful
for cases of intermittent demand (the demand that happens at random).
All the univariate functions in the package have a parameter
occurrence
that allows handling this type of data. The
canonical model, used in smooth
, is called “iETS” -
intermittent exponential smoothing model. This vignette explains how the
iETS model and its occurrence part are implemented in the
smooth
package.
The canonical general iETS model (called iETSG) can be summarised as: where yt is the observed values, zt is the demand size, which is a pure multiplicative ETS model on its own, w(⋅) is the measurement function, r(⋅) is the error function, f(⋅) is the transition function and g(⋅) is the persistence function (the subscripts allow separating the functions for different parts of the model). These four functions define how the elements of the vector vt interact with each other. Furthermore, ϵa, t and ϵb, t are the mutually independent error terms that follow unknown distribution, ot is the binary occurrence variable (1 - demand is non-zero, 0 - no demand in the period t) which is distributed according to Bernoulli with probability pt. μa, t and μb, t are the conditional expectations for the unobservable variables at and bt. Any ETS model can be used for at and bt, and the transformation of them into the probability pt depends on the type of the error. The general formula for the multiplicative error is: while for the additive error it is: This is because both μa, t and μb, t need to be positive, and the additive error models support the real plane. The canonical iETS model assumes that the pure multiplicative model is used for the both at and bt. This type of model is positively defined for any values of error, trend and seasonality, which is essential for the values of at and bt and their expectations. If a combination of additive and multiplicative error models is used, then the additive part is exponentiated prior to the usage of the formulae for the calculation of the probability.
An example of an iETS model is the basic local-level model iETS(M,N,N)G(M,N,N)(M,N,N): where la, t and lb, t are the levels for each of the shape parameters and αa and αb are the smoothing parameters and the error terms 1 + ϵa, t and 1 + ϵb, t are positive and have means of one. We do not make any other distributional assumptions concerning the error terms. More advanced models can be constructing by specifying the ETS models for each part and / or adding explanatory variables.
In the notation of the model iETS(M,N,N)G(M,N,N)(M,N,N), the first brackets describe the ETS model for the demand sizes, the underscore letter points out at the specific subtype of model (see below), the second brackets describe the ETS model, underlying the variable at and the last ones stand for the model for the bt. If only one variable is needed (either at or bt), then the redundant brackets are dropped, so that the notation simplifies, for example, to: iETS(M,N,N)O(M,N,N). If the same type of model is used for both demand sizes and demand occurrence, then the second brackets can be dropped as well, simplifying the view to: iETS(M,N,N)G. Furthermore, the notation without any brackets, such as iETSG stands for a general class of a specific subtype of iETS model (so any error / trend / seasonality). Also, given that iETSG is the most general model of all iETS models, the “G” can be dropped, when the properties are applicable to all subtypes. Finally, the “oETS” notation is used when the occurrence part of the model is discussed explicitly, skipping the demand sizes.
The concentrated likelihood function for the iETS model is: where Y is the vector of all the in-sample observations, θ is the vector of parameters to estimate (initial values and smoothing parameters), T is the number of all observations, T0 is the number of zero observations, $\hat{\sigma_\epsilon}^2 = \frac{1}{T} \sum_{o_t=1} \log^2 \left(1 + \epsilon_t \right)$ is the scale parameter of the one-step-ahead forecast error for the demand sizes and p̂t is the estimated probability of a non-zero demand at time t. This likelihood is used for the estimation of all the special cases of the iETSG model.
Depending on the restrictions on at and bt, there can be several iETS models:
Depending on the type of the model, there are different mechanisms of the model construction, error calculation, update of the states and the generation of forecasts.
In this vignette we will use ETS(M,N,N) model as a base for the different parts of the models. Although, this is a simplification, it allows better understanding the basics of the different types of iETS model, without the loss of generality.
We will use an artificial data in order to see how the functions work:
All the models, discussed in this vignette, are implemented in the
functions oes()
and oesg()
. The only missing
element in all of this at the moment is the model selection mechanism
for the demand occurrence part. So neither oes()
nor
oesg()
currently support “ZZZ” ETS models.
In case of the fixed at and bt, the iETSG model reduces to:
The conditional h-steps ahead mean of the demand occurrence probability is calculated as:
The estimate of the probability p is calculated based on the maximisation of the following concentrated log-likelihood function: where T0 is the number of zero observations and T1 is the number of non-zero observations in the data. The number of estimated parameters in this case is equal to kz + 1, where kz is the number of parameters for the demand sizes part, and 1 is for the estimation of the probability p. Maximising this likelihood deems the analytical solution for the p: where T1 is the number of non-zero observations and T is the number of all the available observations.
The occurrence part of the model oETSF is constructed using
oes()
function:
## Occurrence state space model estimated: Fixed probability
## Underlying ETS model: oETS[F](MNN)
## Vector of initials:
## level
## 0.6364
##
## Error standard deviation: 1.0919
## Sample size: 110
## Number of estimated parameters: 1
## Number of degrees of freedom: 109
## Information criteria:
## AIC AICc BIC BICc
## 146.2060 146.2430 148.9065 148.9935
The occurrence part of the model is supported by adam()
function. For example, here’s how the iETS(M,M,N)F can be constructed:
## Time elapsed: 0.03 seconds
## Model estimated using adam() function: iETS(MMN)[F]
## With optimal initialisation
## Occurrence model type: Fixed probability
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 134.846
## Persistence vector g:
## alpha beta
## 0.0893 0.0140
##
## Sample size: 110
## Number of estimated parameters: 6
## Number of degrees of freedom: 104
## Information criteria:
## AIC AICc BIC BICc
## 425.8980 426.4750 442.1009 438.7564
##
## Forecast errors:
## Asymmetry: 70.129%; sMSE: 95.617%; rRMSE: 1.159; sPIS: -2320.941%; sCE: 530.044%
The odds-ratio iETS uses only one model for the occurrence part, for the μa, t variable (setting μb, t = 1), which simplifies the iETSG model. For example, for the iETSO(M,N,N):
In the estimation of the model, the initial level is set to the transformed mean probability of occurrence $l_{a,0}=\frac{\bar{p}}{1-\bar{p}}$ for multiplicative error model and la, 0 = log la, 0 for the additive one, where $\bar{p}=\frac{1}{T} \sum_{t=1}^T o_t$, the initial trend is equal to 0 in case of the additive and 1 in case of the multiplicative types. In cases of seasonal models, the regression with dummy variables is fitted, and its parameters are then used for the initials of the seasonal indices after the transformations similar to the level ones.
The construction of the model is done via the following set of equations (example with oETSO(M,N,N)): where ât is the estimate of μa, t.
Given that the model is estimated using the likelihood (2), it has kz + ka parameters to estimate, where kz includes all the initial values, the smoothing parameters and the scale of the error of the demand sizes part of the model, and ka includes only initial values and the smoothing parameters of the model for the demand occurrence. In case of iETSO(M,N,N) this number is equal to 5.
The occurrence part of the model iETSO is constructed using
the very same oes()
function, but also allows specifying
the ETS model to use. For example, here’s the ETS(M,M,N) model:
## Occurrence state space model estimated: Odds ratio
## Underlying ETS model: oETS[O](MMN)
## Smoothing parameters:
## level trend
## 0.0766 0.0021
## Vector of initials:
## level trend
## 2.7191 0.3018
##
## Error standard deviation: 83.6998
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria:
## AIC AICc BIC BICc
## 126.2449 126.6259 137.0469 137.9422
And here’s the full iETS(M,M,N)O model:
## Time elapsed: 0.08 seconds
## Model estimated using adam() function: iETS(MMN)[O]
## With optimal initialisation
## Occurrence model type: Odds ratio
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 134.846
## Persistence vector g:
## alpha beta
## 0.0893 0.0140
##
## Sample size: 110
## Number of estimated parameters: 9
## Number of degrees of freedom: 101
## Information criteria:
## AIC AICc BIC BICc
## 405.9370 406.5139 430.2413 412.7953
##
## Forecast errors:
## Asymmetry: -28.177%; sMSE: 67.513%; rRMSE: 0.974; sPIS: 1098.718%; sCE: -108.046%
This should give the same results as before, meaning that we ask
explicitly for the adam()
function to use the earlier
estimated model:
This gives an additional flexibility, because the construction can be done in two steps, with a more refined model for the occurrence part (e.g. including explanatory variables).
Similarly to the odds-ratio iETS, inverse-odds-ratio model uses only one model for the occurrence part, but for the μb, t variable instead of μa, t (now μa, t = 1). Here is an example of iETSI(M,N,N):
This model resembles the logistic regression, where the probability is obtained from an underlying regression model of xt′A. In the estimation of the model, the initial level is set to the transformed mean probability of occurrence $l_{b,0}=\frac{1-\bar{p}}{\bar{p}}$ for multiplicative error model and lb, 0 = log lb, 0 for the additive one, where $\bar{p}=\frac{1}{T} \sum_{t=1}^T o_t$, the initial trend is equal to 0 in case of the additive and 1 in case of the multiplicative types. The seasonality is treated similar to the iETSO model, but using the inverse-odds transformation.
The construction of the model is done via the set of equations similar to the ones for the iETSO model: where b̂t is the estimate of μb, t.
So the model iETSI is like a mirror reflection of the model iETSO. However, it produces different forecasts, because it focuses on the probability of non-occurrence, rather than the probability of occurrence. Interestingly enough, the probability of occurrence pt can also be estimated if 1 + bt in the denominator is set to be equal to the demand intervals (between the demand occurrences). The model (6) underlies Croston’s method in this case.
Once again oes()
function is used in the construction of
the model:
## Occurrence state space model estimated: Inverse odds ratio
## Underlying ETS model: oETS[I](MMN)
## Smoothing parameters:
## level trend
## 0 0
## Vector of initials:
## level trend
## 6.7592 0.9512
##
## Error standard deviation: 4.4665
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria:
## AIC AICc BIC BICc
## 111.2318 111.6128 122.0338 122.9291
And here’s the full iETS(M,M,N)O model:
## Time elapsed: 0.07 seconds
## Model estimated using adam() function: iETS(MMN)
## With optimal initialisation
## Occurrence model type: Inverse odds ratio
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 134.846
## Persistence vector g:
## alpha beta
## 0.0893 0.0140
##
## Sample size: 110
## Number of estimated parameters: 9
## Number of degrees of freedom: 101
## Information criteria:
## AIC AICc BIC BICc
## 390.9239 391.5008 415.2282 397.7822
##
## Forecast errors:
## Asymmetry: -27.983%; sMSE: 67.448%; rRMSE: 0.973; sPIS: 1086.446%; sCE: -106.151%
Once again, an earlier estimated model can be used in the univariate forecasting functions:
This model appears, when a specific restriction is imposed: The pure multiplicative iETSG(M,N,N) model is then transformed into iETSD(M,N,N): An option with the additive model in this case has a different, more complicated form:
The estimation of the multiplicative error model is done using the following set of equations: where and κ is a very small number (for example, κ = 10−10), needed only in order to make the model estimable. The estimate of the error term in case of the additive model is much simpler and does not need any specific tricks to work:
The initials of the iETSD model are calculated directly from the data without any additional transformations
Here’s an example of the application of the model to the same artificial data:
## Occurrence state space model estimated: Direct probability
## Underlying ETS model: oETS[D](MMN)
## Smoothing parameters:
## level trend
## 0 0
## Vector of initials:
## level trend
## 0.3174 1.0113
##
## Error standard deviation: 0.8433
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria:
## AIC AICc BIC BICc
## 116.4054 116.7864 127.2073 128.1027
The usage of the model in case of univariate forecasting functions is the same as in the cases of other occurrence models, discussed above:
## Time elapsed: 0.04 seconds
## Model estimated using adam() function: iETS(MMN)[D]
## With optimal initialisation
## Occurrence model type: Direct
## Distribution assumed in the model: Mixture of Bernoulli and Gamma
## Loss function type: likelihood; Loss function value: 134.846
## Persistence vector g:
## alpha beta
## 0.0893 0.0140
##
## Sample size: 110
## Number of estimated parameters: 5
## Number of degrees of freedom: 105
## Information criteria:
## AIC AICc BIC BICc
## 388.0975 388.6744 401.5999 402.9558
##
## Forecast errors:
## Asymmetry: -32.865%; sMSE: 68.546%; rRMSE: 0.981; sPIS: 1307.353%; sCE: -144.347%
This model has already been discussed above and was presented in (1). The estimation of iETS(M,N,N)G model is done via the following set of equations: The initialisation of the parameters of the iETSG model is done separately for the variables at and bt, based on the principles, described above for the iETSO and iETSI.
There is a separate function for this model, called
oesg()
. It has twice more parameters than
oes()
, because it allows fine tuning of the models for the
variables at and bt. This gives
an additional flexibility. For example, here is how we can use
ETS(M,N,N) for the at and
ETS(A,A,N) for the bt, resulting in
oETSG(M,N,N)(A,A,N):
## Occurrence state space model estimated: General
## Underlying ETS model: oETS[G](MNN)(AAN)
##
## Sample size: 110
## Number of estimated parameters: 6
## Number of degrees of freedom: 104
## Information criteria:
## AIC AICc BIC BICc
## 115.2599 116.0755 131.4628 133.3795
The oes()
function accepts occurrence="g"
and in this case calls for oesg()
with the same types of
ETS models for both parts:
## Occurrence state space model estimated: General
## Underlying ETS model: oETS[G](MNN)(MNN)
##
## Sample size: 110
## Number of estimated parameters: 4
## Number of degrees of freedom: 106
## Information criteria:
## AIC AICc BIC BICc
## 119.3455 119.7265 130.1475 131.0428
Finally, the more flexible way to construct iETS model would be to do
it in two steps: either using oesg()
or oes()
and then using the es()
with the provided model in
occurrence
variable. But a simpler option is available as
well:
## Time elapsed: 0.12 seconds
## Model estimated using es() function: iETS(MMN)[G]
## With optimal initialisation
## Occurrence model type: General
## Distribution assumed in the model: Mixture of Bernoulli and Normal
## Loss function type: likelihood; Loss function value: 136.1905
## Persistence vector g:
## alpha beta
## 0.0157 0.0157
##
## Sample size: 110
## Number of estimated parameters: 13
## Number of degrees of freedom: 97
## Information criteria:
## AIC AICc BIC BICc
## 426.2565 426.8335 461.3628 425.1149
##
## Forecast errors:
## Asymmetry: -33.08%; sMSE: 64.976%; rRMSE: 0.955; sPIS: 780.53%; sCE: -94.154%
Finally, there is an occurrence type selection mechanism. It tries out all the iETS subtypes of models, discussed above and selects the one that has the lowest information criterion (i.e. AIC). This subtype is called iETSA (automatic), although it does not represent any specific model. Here’s an example:
## Occurrence state space model estimated: Odds ratio
## Underlying ETS model: oETS[O](MNN)
## Smoothing parameters:
## level
## 0.0867
## Vector of initials:
## level
## 0.1935
##
## Error standard deviation: 1.6234
## Sample size: 110
## Number of estimated parameters: 2
## Number of degrees of freedom: 108
## Information criteria:
## AIC AICc BIC BICc
## 115.3455 115.4577 120.7465 121.0101
The main restriction of the iETS models at the moment
(smooth
v.2.5.0) is that there is no model selection
between the ETS models for the occurrence part. This needs to be done
manually. Hopefully, this feature will appear in the next release of the
package.